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ABSTRACT. Self-modeling solutions in which the mass of the
plasma in the discharge does not vary with time are examined
in this paper. It is demonstrated that such solutions exist
only in the presence of sufficiently large values of the
coefficient of thermal conductivity. The existence of a
high-temperature T-layer under certain conditions in the sels
modeling regime is established. Certain conclusions are drawn
concerning the effect of thermal conductivity on its structure.
The analysis of self-modeling solutions is supplemented with
numerical calculations of the system of magnetohydrodynamic
equations both in the self-modeling and in the "near-self-
modeling" region of parametric variations.

o -

1. The investigation of the processes which occur in a plasma during a
high-current radiating discharge is connected with the solution of a system

’of equations of magneéeto-radiative hydrodynamics (MRHD). 1In the general case
such a solution can be obtained only on the basis of the application of numeri-
cal methods. Examples of similar solutions are presented, for example, in the

references [1-3].

The use of self-modelihg solutions in a given problem although associated
with definite limitations imposed by the conditions of self-modeling, never-
theless, permits investigation of the separate qualitative aspects ¢f the
process and clarification of the nature of its.dependence on the parameters
such as theycoéfficients of electrical and thermal conductivity, the current

in the discharge, and so forth.

In this paper, self-modeling solutions are investigated in which the mass
of the plasma in the discharge does not vary with time. It is established
that self-modeling solutions of such a type exist only in the presence of

sufficiently large values of the coefficient of thermal conductivity. The

* TIndicates pagination in original text.
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values of the lower boundary of the region of variation of the thermal con-
ductivity coefficient, where a self-modeling solution exists, are calculated

for particular cases.

It is established that under certain conditions there exists a T-layer in
the self-modeling solutions [4]. Conclusions are drawn with respect to the

effect of the process of thermal conductivity on its structure.

The analysis of self-médeling solutiong is supplemented by numerical cal-

culations on an electronic computer of the complete system of equations of M

both in the self-modeling and in thé "near-self-modeling" region of variation

of the parameters.

The self-modeling conditions under which the total plasma energy remains
unchanged with time together with a constant plasma mass are analyzed in great

detail. In the problem under discussion this constancy of the energy is guaran-

o

teed not by the conservative nature of the system but by the equality of the

energy fluxes entering and leaving the system.

We note that the_self-modeling solutions constructed in this paper are a
goocd test for checking and controlling the accuracy of the numerical methods of
solving the system of equations of MRHD. They were used in particular in the

working out and preparation of the numerical methods in the reference [3].

2. The dispersion in a vacuum of a plasma formed as the result of the
electrical explosion of a wire and its interaction with the magnetic field of
the internal ¢ -rents (see Fig. 1) is discussed. The processes of the heat
transfer are t%ken into account in an approximation of the non-linear thermal

conductivity.
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It is assumed that the length of the plasma filament exceeds by JTar its
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diameter and also that axial symmetry holds; the problem is considere

dimensional non-stationary approximation for an infinite cylinder.

3

The corresponding system of equations of magnetohydrodynamics in Lag

¥

a
mass coordinates in the absolute Gaussian system of units has the form [5]
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The symbols are as follows: <t is the time, r is the Buler variable, 0 is
the density of the medium, x(dx = prdr) is the Lagrangian mass variable, v is
the longitudinal velocity compenent, p is the pressure, ¢ is the internal
energy, T is the plasma temperature, Hcp is the azimuthal component of the volw-
tage potential of the electric field, Ez is the axial component of the eleciric
‘field intensity, jz is the density of the electric currents, 0 and ® are the
coefficients, respectively, of the electrical and thermal conductivity, Q is
the Joule heat generated per unit mass, W is the thermal flux through an azi-~
muthal angle equal to one radian, R is the gas constant, Y is the adiabatic
exponent, and ¢ is the velocity of light in empty space; a derivative with

respect to the time is Lagrangian.
The equation of state is chosen in the simplest form.

The solution of the problem is sought for a cylinder of unit height in the
T ‘
region t 2 0, 0 € x = M, where M = f pr dr = const. is the mass of the plasuma
0

in the discharge taken over a unit height of the plasma filament and included
within one radian of the azimuthal angle and r_(t) is the radius of the boundery

between the plasma and the vacuum. The boundary conditions for the system (2.1




are formulated in the following mamer:: at the center where x = 0 the conditions

of symmetry are

v(0,8) =0,  Hy(0,8) =0, W(0,¢t) =0, ; (2.2)
and to the right of the plasma-vacuum boundary where x = M (r = r (t)) [1kho
Py =0, (M, 1) =20(8) [er. (1),  T(M, 1) =0 (2.3)

I(t) specifies the variation in time of the total current in the discharge.

In the general case of MRHD in the presence in the medium of a nonlinear
thermal cohductivity the téﬁperature at the boundary of the material with the
vacuum is different from zero. The condition T(M, t) = O is the limiting case
which guarantees the absence of a thermal flux into the system from the vacuum.

Other types of the correct boundary condition for thermal functions are

possible, for example, W(M, t) = 0, which corresponds to the case of an electron

thermal conductivity or W(M, t) = GSTQ: the plasma filament radiates like

»

blackbody (GS is the Stefan Boltzmann constant). The latter condition leads to

supplementary limitations on the conditions of self-modeling obtained below.

To construct a self-modeling solution we will consider the asymptotlic phase
of plasma dispersion when the effect 6f the initial data has already disappeared.
It is possible to disregard the initial diameter of the plasma filament in com-
parison with its dimensions in the asymptotic phase and accordingly to assume
the initial plasma density to be infinitely large. This permits reducing the

°

number of parameters of the problem which have to be determined.

The coefficients of electrical and thermal conductivity are assumed to be
power functions of temperature and density; to achieve greater generality in
the derivation of the conditions of self-modeling an explicit dependence of

these coefficients on the time is also introduced:
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The law for I(t) is also given in the form of a power function, namely
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- Furthermore, the case of a constant current m = O will also be considere

jor

"in detail.




We will seek a self-modeling solution of the system of equations (Z.1) in

g

which all the functions are given in the form F{x, t) = FO () F, where F is

a dimensional constant, s = x/M is a self-modeling variable proportional to the
mass variable, and f(s) is a dimensionless function of the self-modeling veriable.
The self-modeling solutions of this type were investigatedvin the references

e, 71.

The analysis shows that the conditions of self-modeling in this case reduce
to the fulfillment of specific relationships between the parameters of the

problem -~ the exponents in the power dependences (2.4) and (2.5):
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It also follows from the conditions (2.6) that in the case of the specified
relations (2.4) which satisfy the equality (2.6) one can guarantee self-modeling /1450
of the solution because of the corresponding selection of the current law ( the

quantity m in (2.5)).

For example, in the event of an increasing flux m > 0 and the absence of a
time dependence in. (2.4) and (Z.S)I(né =n, = 0) the conditions of self-
modeling (2.6) reduce to the inequalities

go << _——0.5, g << —(.5. .
Thus, the coefficients of electrical conductivity and thermal conductivity should
increase with an increase in the density, while in practice the reverse depen-

dence usually occurs. It is true that this dependence is rather weak; it exhibits

(,,§
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the most significant effect near the plasma-vacuum boundary. Such a dependence
on the density can model the fact that near the boundary with the vacuum the
electrical and thermal conductivity decreases more sharply than, respectively,

0 ang T

If one chooses the constants of the problem M, R, and IO as the determining
parameters with individual dimensionality, then upon fulfillment of the condi-

“tions' (2.6) all the unknown functions can be put in the form
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The equations presented clarify the nature of the dependence of the various
functions in the self-modeling stage on the parameters of the problem and the
time. For example, the size of the electrical resistance of the plasma per unit

length of the plasma filament R 1 is calculated in the following manner:
P

M

g :
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(RO is some dimensionless quantity). It follows from this that in the self-
modeling stage the resistance of a dispersing plasma.decreases with the time,
but it does not depend on the mass of the plasma M, or on the nature of the

material R, or on the law specifying the variation of the current 107 e

The total amount of energy contained in the volume occupied by the plasma [}QSI

is expressed in the following manner:
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(eo is a dimensionless constant).

If the self-modeling conditions (2.6) are fulfilled, the system of equations
of MRHD (2.1) reduces to a system of ordinary differential equations for the

dimensionless functions «, B, 8, £, h, A, ¢, and w:
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Differentiation with respect to the self-modeling variable is dencted by a

prime.

The dimensionless constants OO and %O are expressed in terms of the para-

meters M, IO’ and R, and respectively o, and x ip the following manner:
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The boundary conditions (2.2) and (2.3) in the self-modeling form can be

written in the following way:

A
®
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Ca(0)=0, R(0)=0, w(0)=0, (:
B(1)=0, MDA =2, F{1)=0 (2.12)

3. Below we will limit the analysis of self-modeling solutions to the

case of constant current (m = 0).

Here with the supplementary assumption k =0, a solution is success-

= q
0 ¢}
fully constructed in an analytic form. The coefficients of electrical and

thermal conductivity in this case have the form
0 == Gt %= %o T hpT Ut~ (3.1)

The dependence of ¢ and % on the time in (3.1) is very artificial from
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physical point of view. However, as the calculations of the system (2.%) -
(2.12) show, the main gqualitative characteristics of the solution obtained in
this most simple particular case are maintained in more general cases for

reasonable values of the exponents ko, qo, nO’.kl’ ql, nl

It is evident that if for the self-modeling soiutions, the current in the
discharge is constant, then because of (2.8) the total energy of the plasma
and also any quantity which has the dimension of energy, does not depend on

the time. The condition of energy constancy is fulfilled in the well known

~1




self-modeling solutions of the problem of a strong explosion in the atmosphere
[8, 9] where the energy produced at the initial instant does not change in
quantity during the rest of the process. In the problem under investigation
concerning an electrical discharge in a plasma, the energy constancy is pro-
vided not by the conservative nature of the system but by the balance of the
electromagnetic energy entering the system and the energy expended as work
against the force of the magnetic field and also the energy leaving the s
in the form of thermal flux. Evidently in the usual gas dynamics nontrivial
self-modeling solutions of such a type are not possible. The presence of
supplementary external sources similar to Joule heating 1s necessary for their

existence.

.

The integration of (2.9) under the condition (3.1), m = O, and for example,

a > -1 leads to the following expressions for the dimensionless functions

of the velocity @, the pressure B, the magnetic strength h, the temperature

h

the density 8§, and the thermal flux w, in terms of the dimensionless radius A:
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The relationship S = f Bf "AdA establishes a connection between the dimension-
% .

less radius and the self-modeling variable. The quantity A, is the dimension-
less value of the radius of the plasma vacuum boundary and is determined from
the condition that the plasma mass remain constant

by
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The electric field strength and the current density in the solution are constant:
1 ~ 1
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If follows from (3.2) that the pfessure is a monotonically

function of the radius, and h increases with an increase in A.

f, can be nonmonotonic in A. The position of its maximum Xl « is determined
jHram
by the expression
i
> on
}v;nax‘:-'zfv‘:‘————;r N “/\,; o
ﬁo‘o Lo 2l

and the maximum value of f has the form
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In order that the temperature maximum be located inside the range O < A < i, 1;453

the condition

1 ‘ 1

. T
200, 10, | (3.6)

should be fulfilled.

It follows from the expression for f£(A) in (3.2) that the solution has
meaning (£(A) = O in the entire region O < A £ A_) only if the inequality
B2 1 is fulfilled or

4
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Thus comparing (3.6) and (3.7), we arrive at the conclusion that the
temperature in the solution is not monotonic and its maximum is contained

within the range (O, X*) upon fulfillment of the inequality

1 -2
< 0<{jll 1

2

. ~ - = e~
2515, * 201+ 3gxg,
or equivalently,
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~ 2, . e e -
where Rem* = QHGOX* is the Reynolds magnetic number computed on the basis of

the value of the velocity of the plasma-vacuum boundary and its distance from

o

the center. For Rem* < 2 the temperature maximum is always attained on th
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_axis, and f(\) is a monotonically decreasing function. For Re * > Li{g_ « y
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(2q1 + 3), the self-modeling solution has no meaning.




One can conclude from tﬁe inequalities presented above that in order For
the temperature of the (T-laver) to be nonmonotonic in the solution of the
problem of a high-current discharge, it is necessary that the characteristic
Reynolds magnetic numberAbe sufficiently large. This statement agrees with

the conditions derived in the references [4, 6] for the existence ¢of a T-layer.

We will investigate the nature of the dependence of the self-modeling

solution (3.2) on the value of the thermal conductivity coefficient. First:

%

we will discuss the simplest case where % does not depend on the temperature

-1
=0, H = n.t

and the density (kl = q 0

). The quantity A, is determined from
1 *

(3.3) in the explicit form:

Be 2 exp (Yy %) =1
i drog exp (Mano) —*/s

If follows from (3.7) that in this case the self-modeling socluticn exists

only upon fulfillment of the inequality %d> %01 = 0.

The condition for nonmonotonicity of the temperature (3.8) can be written

in the form

[N

‘%01<%0<%0‘2’ - %01'__—0’ %Oazélnfz' (,Bm{,;‘)
When %02 %02’ the temperature maximum is located at the center.

We will now discuss the simplest case of a nonlinear thermal conductivity
k=1, 9
carried out above, lead to the inequality (3.9) with x«

2 ~ ~
L/m (1 -2/m)7; for Hy < A

=0, % = %OTt_l. The calculations which are similar to those
o1 = L/ and %03 = /1454

o1 the self-modeling solution has no meaning, since

a region with negative temperature appears in it. The dependence of the self-

o
[

modeling solution on the coefficient » (its values are indicated on the graph

01

for "5 > %Ol is preéented in Figure 2 (GO = 0.02, kl =1, a, = 0). As "y
increases, the temperature maximum decreases and shifts nearer to the axis. As

%O < o, we have £(0) = 1/3m.

And so it has turned out in two simple particular cases that the region
of permissible values for the self-modeling solution is restricted to less

than a certain value of %01' An analysis of the solution (3.2) shows Tthat an

10




increase in the exponent kl, i.e., with an increase in the degree of non-

linearity in the thermal conductivity coefficient, the nature of the solution

is preserved, and the value of %Ol increases.
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Figure 2.

Figure 3.

k. In the case of more general assumptions than the conditions (3.1),
location of the self-modeling solution of the problem of the dispersion of
plasma into a vacuum reduces to the numerical solution of a system of

o

differential equations (2.9) under the conditions (2.11) and (2.12).

follows from the calculations that the principal qualitative features of the

self-modeling solution, which were clarified above analytically, occur in this
case., Thus, a typical distribution is presented in Figure 3 for the sought
dimensionless functions with respect to the self-modeling variable

which were
obtained in the calculation of the version of the problem with the

parameter values: ko = 3/2, q

o = O, k.l = l, ql = O, %O = 1.5, and C}"G = 0.l

Here the plasma conductivity 5, and also the current density [ are already

Fag
Ee]

]

lowing

not constant, and the maximum of ¢ agrees with the temperature maximum 7.

An investigation of the dependence of the solution on the parameter x

- O

permits establishing the fact that in this case there exist two charactie

sristic
values of the thermal conductivity coefficient %01 and %02. The
T i ; N PR %< WU <% __. the
medeling solution occurs only for %O > %Ol’ in the rgnge %Ol o AO“’ t




temperature profile is nonmonotonic in s, and for %O 2 %02, the maximum iz

located at the center.

Thus, even when the self-modeling conditions (2.6) derived on the basis
of the usual dimensional analysis are fulfilled, the self-modeling sclution

does not exist for all values of the thermal conductivity coefficient

v %

O

although formally, the value of this coefficient does not enter inte the

self-modeling conditions.

L7 - >
/7/ K
|
/ |
Zﬂ/
{
!
A’ |
050 :
\\\_; 72
£
g 200 500
Figure L. ' Figure 5.

5. The self-modeling solutions constructed were realized in numerical

calculations of the complete system of Egs. (2.1). The system of differential

equations was approximated in the calculations by a uniform completely con-
servative difference method which was solved by the method of successive
elimination [10-12]. The boundary conditions\were implemented in agreement
with (2.2) and (2.3). The initial conditions were specified in the form of
arbitrary functions of the x coordinate which do not coincide with the self-
modeling profiles. Such a numerical solution of the problem is presented in
Figure 4 for the same parameter values as in Figure 3 with %Ol < %O < %02¢

- The temperature profiles are presented at successive instants of time which

are selected so that during the time which elapses between them, an identical

amount of electromagnetic energy equal to twice the initial enters the plasma.

o

2
Here, (MR/IO JT(x, 0) = 0.1 and m = O.




The solution enters the self-modeling regime as time goes by.

given in Figure 5 in dimensionless form:

.internal M

kinetic

Iz
and magnetic. - ‘ ‘ . . /1456
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With an increase in t the values of these quantities and also the value of the

total energy tend to their values in the self-modeling solution.

Numerical calculations of the system (2.1) were éarried cut in the 'near
self-modeling" region, i.e., with the conditions (2.6) fulfilled, but for
small values of the thermal conductivity coefficient, %O < %Olo The solutions
actually appeared to be nonself-modeling here, and the behavio* of the flow
parameters did not fit into the framework of the functions (2.7). The non-
self-modeling solution has a significantly nonstationary nature; the emergence
and growth of a high-temperature T-layer is observed as well as & series of
other phenomena usually accompanying it: the formation of a shock wave which
propagates toward the axis, a general retardation of the gas, pinching of the

plasma filament, and so forth [3, L].

Summarizing the facts derived on the basis of the analysis of self-modeling
solutions and the results of numerical calculations in the'near-self-modeling”
region, one can draw conélusions about the effect of the thermal conductivity
on the processes which occur during a high-current discharge in a plasma.

In the case of a sufficiently small thermal conductivity coefficient (QO < %Oi}
a high-temperature T-layer originates and develops. he solution here has a
significantly nonself-modeling nature. For example, the temperature of the

gas in the T-layer increases, while in the central region it drops.

-
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When %Ol < %O < %09’ the effect of the thermal conductivity is already
rather strong, due to the fact that the outflow of heat ensures an unusual
stabilization of the T-layer: the temperature of the entire mass of the gas

varies with time according to one and the same power law.

he high-thermal conductivity coefficient suppresses the T-layer, non-
monotonicity of the temperature is not observed in the solution, and its

maximum is located on the axis.

6. We will consider one distinctive feature of the analytic soclution
constructed in Section 3. The temperature maximum which occurs in this
solution (both in the self-modeling and in the '"near-self-mocdeling' region)
cannot be called a T-layer in the complete sense, for here OO = gOt dces not
depend on‘the temperature and the presence of a significant nonlinearity
d In ¢/dT > O, is one of the conditions for the formation of this effect.
Classical scanning is absent in the present case, since with an increase in

t the conductivity of the plasma becomes rather small, and the current density

becomes constant along the radius.

Nevertheless, the temperature has a sharply-expressed maximum. The
presence of this maximum is explained by the dependence of the amount of

2
Joule heating per unit mass on the density Q = ([ /506.

The density S in the present problem drops off because of the intensive
dis@ersion in proportion to the approach to the plasma-vacuum boundary, and
the Joule heating correspondingly grows. Such a behavior of the guantity Q
. [1k57

does not agree with the maximum of the Joule heating because of the thermal

results in the appearance of a temperature maximum whose position, however

conductivity processes.

Thus, in the present case, there is a certain limiting degeneracy of the
T-layer effect when an inverse relation between the 'gas dynamic and the
electromagnetic processes is absent (the electrical conductivity does not

depend on the thermodynamic state of the medium).

If the conductivity is a function of the temperature, then a similar

I3

" inhomogeneous state can become essential for the development of the T-laver.

14




So along with the well known skin-effect and the superheating instability,
we note one more possible mechanism for the initiation of a T-laver.
The authors are grateful to L. M. Degtyarev and A. P. Favorskiy for useful

discussions and also A. A. Ivanov and V. N. Ravinskaya'  for carrying out the

numerical calculations.

Translated from Journal of Computational Mathematics and Mathematical
Physics, Vol. 10, No. 6, pp. 1447-1457, November-December 1970. Original
article submitted April 8, 1970.
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